ML::ROCFunctions
This repository has the code of a Raku package for
Receiver Operating Characteristic (ROC)
functions.
The ROC framework is used for analysis and tuning of binary classifiers, [Wk1].
(The classifiers are assumed to classify into a positive/true label or a negative/false label. )
For computational introduction to ROC utilization (in Mathematica) see the article
"Basic example of using ROC with Linear regression",
[AA1].
The examples below use the packages
"Data::Generators",
"Data::Reshapers", and
"Data::Summarizers", described in the article
"Introduction to data wrangling with Raku",
[AA2].
Installation
Via zef-ecosystem:
zef install ML::ROCFunctions
From GitHub:
zef install https://github.com/antononcube/Raku-ML-ROCFunctions
Usage examples
Properties
Here are some retrieval functions:
use ML::ROCFunctions;
say roc-functions('properties');
# (FunctionInterpretations FunctionNames Functions Methods Properties)
roc-functions('FunctionInterpretations')
# {ACC => accuracy, AUROC => area under the ROC curve, Accuracy => same as ACC, F1 => F1 score, FDR => false discovery rate, FNR => false negative rate, FOR => false omission rate, FPR => false positive rate, MCC => Matthews correlation coefficient, NPV => negative predictive value, PPV => positive predictive value, Precision => same as PPV, Recall => same as TPR, SPC => specificity, Sensitivity => same as TPR, TNR => true negative rate, TPR => true positive rate}
say roc-functions('FPR');
# &FPR
Single ROC record
Definition: A ROC record (ROC-hash or ROC-hash-map) is an object of type Associative
that has the keys:
"FalseNegative", "FalsePositive", "TrueNegative", "TruePositive". Here is an example:
{FalseNegative => 50, FalsePositive => 51, TrueNegative => 60, TruePositive => 39}
Here we generate a random "dataset" with columns "Actual" and "Predicted" that have the values "true" and "false"
and show the summary:
use Data::Generators;
use Data::Summarizers;
my @dfRandomLabels =
random-tabular-dataset(200, <Actual Predicted>,
generators => {Actual => <true false>,
Predicted => <true false>});
records-summary(@dfRandomLabels)
# +--------------+--------------+
# | Actual | Predicted |
# +--------------+--------------+
# | true => 109 | false => 110 |
# | false => 91 | true => 90 |
# +--------------+--------------+
Here is a sample of the dataset:
use Data::Reshapers;
to-pretty-table(@dfRandomLabels.pick(6))
# +--------+-----------+
# | Actual | Predicted |
# +--------+-----------+
# | true | true |
# | true | true |
# | false | false |
# | true | true |
# | true | false |
# | true | false |
# +--------+-----------+
Here we make the corresponding ROC hash-map:
to-roc-hash('true', 'false', @dfRandomLabels.map({$_<Actual>}), @dfRandomLabels.map({$_<Predicted>}))
# {FalseNegative => 57, FalsePositive => 38, TrueNegative => 53, TruePositive => 52}
Multiple ROC records
Here we make random dataset with entries that associated with a certain threshold parameter with three unique values:
my @dfRandomLabels2 =
random-tabular-dataset(200, <Threshold Actual Predicted>,
generators => {Threshold => (0.2, 0.4, 0.6),
Actual => <true false>,
Predicted => <true false>});
records-summary(@dfRandomLabels2)
# +---------------+--------------+--------------+
# | Threshold | Predicted | Actual |
# +---------------+--------------+--------------+
# | Min => 0.2 | true => 104 | false => 103 |
# | 1st-Qu => 0.2 | false => 96 | true => 97 |
# | Mean => 0.4 | | |
# | Median => 0.4 | | |
# | 3rd-Qu => 0.6 | | |
# | Max => 0.6 | | |
# +---------------+--------------+--------------+
Remark: Threshold parameters are typically used while tuning Machine Learning (ML) classifiers.
Here we group the rows of the dataset by the unique threshold values:
my %groups = group-by(@dfRandomLabels2, 'Threshold');
records-summary(%groups)
# summary of 0.6 =>
# +-------------+---------------+-------------+
# | Actual | Threshold | Predicted |
# +-------------+---------------+-------------+
# | false => 35 | Min => 0.6 | true => 37 |
# | true => 29 | 1st-Qu => 0.6 | false => 27 |
# | | Mean => 0.6 | |
# | | Median => 0.6 | |
# | | 3rd-Qu => 0.6 | |
# | | Max => 0.6 | |
# +-------------+---------------+-------------+
# summary of 0.2 =>
# +-------------+---------------+-------------+
# | Predicted | Threshold | Actual |
# +-------------+---------------+-------------+
# | false => 33 | Min => 0.2 | false => 34 |
# | true => 31 | 1st-Qu => 0.2 | true => 30 |
# | | Mean => 0.2 | |
# | | Median => 0.2 | |
# | | 3rd-Qu => 0.2 | |
# | | Max => 0.2 | |
# +-------------+---------------+-------------+
# summary of 0.4 =>
# +-------------+---------------+-------------+
# | Actual | Threshold | Predicted |
# +-------------+---------------+-------------+
# | true => 38 | Min => 0.4 | false => 36 |
# | false => 34 | 1st-Qu => 0.4 | true => 36 |
# | | Mean => 0.4 | |
# | | Median => 0.4 | |
# | | 3rd-Qu => 0.4 | |
# | | Max => 0.4 | |
# +-------------+---------------+-------------+
Here we find and print the ROC records (hash-maps) for each unique threshold value:
my @rocs = do for %groups.kv -> $k, $v {
to-roc-hash('true', 'false', $v.map({$_<Actual>}), $v.map({$_<Predicted>}))
}
.say for @rocs;
# {FalseNegative => 16, FalsePositive => 24, TrueNegative => 11, TruePositive => 13}
# {FalseNegative => 18, FalsePositive => 19, TrueNegative => 15, TruePositive => 12}
# {FalseNegative => 17, FalsePositive => 15, TrueNegative => 19, TruePositive => 21}
Application of ROC functions
Here we define a list of ROC functions:
my @funcs = (&PPV, &NPV, &TPR, &ACC, &SPC, &MCC);
# [&PPV &NPV &TPR &ACC &SPC &MCC]
Here we apply each ROC function to each of the ROC records obtained above:
my @rocRes = @rocs.map( -> $r { @funcs.map({ $_.name => $_($r) }).Hash });
say to-pretty-table(@rocRes);
# +----------+-----------+----------+----------+----------+----------+
# | ACC | MCC | NPV | TPR | PPV | SPC |
# +----------+-----------+----------+----------+----------+----------+
# | 0.375000 | -0.239599 | 0.407407 | 0.448276 | 0.351351 | 0.314286 |
# | 0.421875 | -0.158958 | 0.454545 | 0.400000 | 0.387097 | 0.441176 |
# | 0.555556 | 0.111457 | 0.527778 | 0.552632 | 0.583333 | 0.558824 |
# +----------+-----------+----------+----------+----------+----------+
References
Articles
[Wk1] Wikipedia entry, "Receiver operating characteristic".
[AA1] Anton Antonov,
"Basic example of using ROC with Linear regression",
(2016),
MathematicaForPrediction at WordPress.
[AA2] Anton Antonov,
"Introduction to data wrangling with Raku",
(2021),
RakuForPrediction at WordPress.
Packages
[AAp1] Anton Antonov,
ROCFunctions Mathematica package,
(2016-2022),
MathematicaForPrediction at GitHub/antononcube.
[AAp2] Anton Antonov,
ROCFunctions R package,
(2021),
R-packages at GitHub/antononcube.
[AAp3] Anton Antonov,
Data::Generators Raku package,
(2021),
GitHub/antononcube.
[AAp4] Anton Antonov,
Data::Reshapers Raku package,
(2021),
GitHub/antononcube.
[AAp5] Anton Antonov,
Data::Summarizers Raku package,
(2021),
GitHub/antononcube.