Rand Stats

Text::CodeProcessing

zef:antononcube

Raku Text::CodeProcessing

Build Status

In brief

The main goal of this package is to facilitate Literate Programming with Raku.

The package has functions and a script for the evaluations of code chunks in documents of different types (like Markdown, Org Mode, Pod6.)

There is also a script for extracting code chunks.


Installation

Package installations from both sources use zef installer (which should be bundled with the "standard" Rakudo installation file.)

To install the package from Zef ecosystem use the shell command:

zef install Text::CodeProcessing

To install the package from the GitHub repository use the shell command:

zef install https://github.com/antononcube/Raku-Text-CodeProcessing.git

Usage

Main function

The package provides the function FileCodeChunksEvaluation for the evaluation of code chunks in files. The first argument is a file name string:

FileCodeChunksEvaluation( $fileName, ... )

Here are the (optional) parameters:

When the prompt arguments are given the value 'AUTO' then the actual prompt values are selected according to the file type:


Command Line Interface

The package provides Command Line Interface (CLI) scripts, file-code-chunks-eval and file-code-chunks-extract.

Here are script invocation examples for the code chunks evaluation in a file named "doc.md":

file-code-chunks-eval doc.md
file-code-chunks-eval file-code-chunks-eval.raku --evalOutputPrompt="## OUTPUT :: " --evalErrorPrompt="## ERROR :: " -o=doc_newly_weaved.md doc.md

Here is a script invocation example for code extraction from code chunks in a file named "doc.md":

file-code-chunks-extract -o=doc_new_extract.md doc.md

If no output file name is specified then the script file-code-chunks-eval (file-code-chunks-extract) makes a new file in the same directory with the string "_woven" ("_tangled") inserted into the input file name.

file-code-chunks-eval

file-code-chunks-eval --help
# Usage:
#   file-code-chunks-eval <inputFileName> [-o|--output=<Str>] [--eval-output-prompt|--evalOutputPrompt=<Str>] [--eval-error-prompt|--evalErrorPrompt=<Str>] [--prompt-per-line|--promptPerLine] -- Evaluates code chunks in a file. (Markdown, Org-mode, or Pod6.)
#   
#     <inputFileName>                                  Input file name.
#     -o|--output=<Str>                                Output file; if not given the output file name is the input file name concatenated with "_woven". [default: 'Whatever']
#     --eval-output-prompt|--evalOutputPrompt=<Str>    Evaluation results prompt. [default: 'Whatever']
#     --eval-error-prompt|--evalErrorPrompt=<Str>      Evaluation errors prompt. [default: 'Whatever']
#     --prompt-per-line|--promptPerLine                Should prompts be printed per line or not? [default: True]

file-code-chunks-extract

file-code-chunks-extract --help
# Usage:
#   file-code-chunks-extract <inputFileName> [-o|--output=<Str>] -- Extract content of code chunks in a Markdown, org-mode, or Pod6 file.
#   
#     <inputFileName>      Input file name.
#     -o|--output=<Str>    Output file; if not given the output file name is the input file name concatenated with "_tangled". [default: 'Whatever']

cronify

The script cronify facilitates periodic execution of a shell command (with parameters.) It heavily borrows ideas and code from the chapter "Silent Cron, a Cron Wrapper" of the book, "Raku Fundamentals" by Moritz Lenz, [ML1].

cronify --help
# Usage:
#   cronify [-i|--time-interval[=Int]] [-t|--total-time[=Int]] [--verbose] [<cmd> ...] -- Periodically execute given command (and arguments.)
#   
#     [<cmd> ...]                 Command and arguments to be executed periodically.
#     -i|--time-interval[=Int]    Time interval between execution starts. [default: 10]
#     -t|--total-time[=Int]       Total time for the repeated executions loop. [default: 1800]
#     --verbose                   Should execution traces be proclaimed or not? [default: False]

Implementation notes

The implementation uses a greatly reduced version of the class Jupyter::Kernel::Sandbox of Raku Jupyter kernel package/repository [BD1]. (See the class REPLSandbox.)

Just using EVAL, (as in [SO1]) did not provide state persistence between code chunks evaluations. For example, creating and assigning variables or loading packages in the first code chunk did not make those variables and packages "available" in the subsequent code chunks.

That problem is resolved by setting up a separate Raku REPL (sandbox) object.


TODO

The following TODO items are ordered by priority, the most important are on top.


References

Articles

[AA1] Anton Antonov, "Conversion and evaluation of Raku files", (2022), RakuForPrediction at WordPress.

[DS1] Daniel Sockwell, "Weaving Raku: semiliterate programming in a beautiful language", (2020), codesections.com.

[SO1] Suman Khanal et al., "Capture and execute multiline code and incorporate result in raku", (2017), Stack Overflow.

Books

[ML1] Moritz Lenz, "Raku Fundamentals: A Primer with Examples, Projects, and Case Studies", 2nd ed. (2020), Apress.

Repositories

[BD1] Brian Duggan et al., p6-jupyter-kernel, (2017-2020), GitHub/bduggan.

Videos

[AAv1] Anton Antonov, "Conversion and evaluation of Raku files", (2022) Anton Antonov's YouTube channel.