Recommenders Workflows
In brief
This Raku (Perl 6) package has grammar classes and action classes for the parsing and
interpretation of natural Domain Specific Language (DSL) commands that specify recommendations workflows.
The interpreters (actions) target different programming languages: R, Mathematica, Python, Raku.
Also, different natural languages.
The generated pipelines are for the software monads
"SMRMon-R" and
"SMRMon-WL"
implemented in R and WL respectively, [AAp2, AAp3], and the object oriented Python and Raku implementations [AAp4, AAp5].
Remark: "SMR" stands for "Sparse Matrix Recommender". "SBR" stands for "Streams Blending Recommender".
Remark: "WL" stands for "Wolfram Language". "Mathematica" and "WL" are used as synonyms.
Installation
Zef ecosystem:
zef install DSL::English::RecommenderWorkflows
GitHub:
zef install https://github.com/antononcube/Raku-DSL-English-RecommenderWorkflows.git
Examples
Programming languages
Here is a simple invocation:
use DSL::English::RecommenderWorkflows;
ToRecommenderWorkflowCode('recommend by profile action->10, drama->7', 'R::SMRMon');
# SMRMonRecommendByProfile( profile = c("action"=10, "drama"=7))
Here is a more complicated pipeline specification used to generate the code
for recommender systems implemented in different languages:
my $command = q:to/END/;
create from dfTitanic;
apply the LSI functions inverse document frequency, term frequency, and cosine;
recommend by profile female->3, 30->0.1;
extend recommendations with dfTitanic;
show pipeline value
END
say $_.key, "\n", $_.value, "\n" for ($_ => ToRecommenderWorkflowCode($command, $_ ) for <R::SMRMon WL::SMRMon Python::SMRMon Raku>);
# R::SMRMon
# SMRMonCreate(data = dfTitanic) %>%
# SMRMonApplyTermWeightFunctions(globalWeightFunction = "IDF", localWeightFunction = "TermFrequency", normalizerFunction = "Cosine") %>%
# SMRMonRecommendByProfile( profile = c("female"=3, "30"=0.1)) %>%
# SMRMonJoinAcross( data = dfTitanic ) %>%
# SMRMonEchoValue()
#
# WL::SMRMon
# SMRMonUnit[] \[DoubleLongRightArrow] SMRMonCreate[dfTitanic] \[DoubleLongRightArrow]
# SMRMonApplyTermWeightFunctions["GlobalWeightFunction" -> "IDF", "LocalWeightFunction" -> "TermFrequency", "NormalizerFunction" -> "Cosine"] \[DoubleLongRightArrow]
# SMRMonRecommendByProfile[<|"female"->3, "30"->0.1|>] \[DoubleLongRightArrow]
# SMRMonJoinAcross[dfTitanic] \[DoubleLongRightArrow]
# SMRMonEchoValue[]
#
# Python::SMRMon
# obj = SparseMatrixRecommender().create_from_wide_form(data = dfTitanic).apply_term_weight_functions(global_weight_func = "IDF", local_weight_func = "TermFrequency", normalizer_func = "Cosine").recommend_by_profile( profile = {"female":3, "30":0.1}).join_across( data = dfTitanic ).echo_value()
#
# Raku
# my $sbrObj = ML::StreamsBlendingRecommender::CoreSBR.new;
# $sbrObj.makeTagInverseIndexesFromWideForm( dfTitanic);
# $sbrObj.applyTermWeightFunctions(globalWeightFunction => "IDF", localWeightFunction = "TermFrequency", normalizerFunction => "Cosine");
# $sbrObj.recommendByProfile( profile => %("female"=>3, "30"=>0.1));
# $sbrObj.joinAcross( dfTitanic );
# say $sbrObj.takeValue
Natural languages
say $_.key, "\n", $_.value, "\n" for ($_ => ToRecommenderWorkflowCode($command, $_ ) for <Bulgarian English Russian>);
# Bulgarian
# създай с таблицата: dfTitanic
# приложи тегловите функции: глобално-теглова функция: "IDF", локално-теглова функция: "TermFrequency", нормализираща функция: "Cosine"
# препоръчай с профила: {"female":3, "30":0.1}
# напречно съединение с таблицата: dfTitanic
# покажи лентовата стойност
#
# English
# create with data table: dfTitanic
# apply the term weight functions: global weight function: "IDF", local weight function: "TermFrequency", normalizing function: "Cosine"
# recommend with the profile: {"female":3, "30":0.1}
# join across with the data table: dfTitanic
# show the pipeline value
#
# Russian
# создать с таблицу: dfTitanic
# применять весовые функции: глобальная весовая функция: "IDF", локальная весовая функция: "TermFrequency", нормализующая функция: "Cosine"
# рекомендуй с профилю: {"female":3, "30":0.1}
# перекрестное соединение с таблицу: dfTitanic
# показать текущее значение конвейера
CLI
The package provides a Command Line Interface (CLI) script. Here is its usage message:
ToRecommenderWorkflowCode --help
# Translates natural language commands into recommender workflow programming code.
# Usage:
# ToRecommenderWorkflowCode <command> [--target=<Str>] [--language=<Str>] [--format=<Str>] [-c|--clipboard-command=<Str>] -- Translates natural language commands into (machine learning) recommender workflow programming code.
# ToRecommenderWorkflowCode <target> <command> [--language=<Str>] [--format=<Str>] [-c|--clipboard-command=<Str>] -- Both target and command as arguments.
# ToRecommenderWorkflowCode [<words> ...] [-t|--target=<Str>] [-l|--language=<Str>] [-f|--format=<Str>] [-c|--clipboard-command=<Str>] -- Command given as a sequence of words.
#
# <command> A string with one or many commands (separated by ';').
# --target=<Str> Target (programming language with optional library spec.) [default: 'WL::SMRMon']
# --language=<Str> The natural language to translate from. [default: 'English']
# --format=<Str> The format of the output, one of 'automatic', 'code', 'hash', or 'raku'. [default: 'automatic']
# -c|--clipboard-command=<Str> Clipboard command to use. [default: 'Whatever']
# <target> Programming language.
# [<words> ...] Words of a data query.
# -t|--target=<Str> Target (programming language with optional library spec.) [default: 'WL::SMRMon']
# -l|--language=<Str> The natural language to translate from. [default: 'English']
# -f|--format=<Str> The format of the output, one of 'automatic', 'code', 'hash', or 'raku'. [default: 'automatic']
# Details:
# If --clipboard-command is the empty string then no copying to the clipboard is done.
# If --clipboard-command is 'Whatever' then:
# 1. It is attempted to use the environment variable CLIPBOARD_COPY_COMMAND.
# If CLIPBOARD_COPY_COMMAND is defined and it is the empty string then no copying to the clipboard is done.
# 2. If the variable CLIPBOARD_COPY_COMMAND is not defined then:
# - 'pbcopy' is used on macOS
# - 'clip.exe' on Windows
# - 'xclip -sel clip' on Linux.
Versions
The original version of this Raku package was developed/hosted at
[ AAp3 ].
A dedicated GitHub repository was made in order to make the installation with Raku's zef
more direct.
(As shown above.)
References
[AAp1] Anton Antonov,
Recommender Workflows Raku Package,
(2019),
ConversationalAgents at GitHub.
[AAp2] Anton Antonov,
Sparse Matrix Recommender Monad in R,
(2019),
R-packages at GitHub.
[AAp3] Anton Antonov,
Monadic Sparse Matrix Recommender Mathematica package,
(2018),
MathematicaForPrediction at GitHub.
[AAp4] Anton Antonov,
SparseMatrixRecommender Python package,
(2021),
Python-packages at GitHub.
[AAp5] Anton Antonov,
ML::StreamsBlendingRecommender Raku package
(2021),
GitHub/antononcube.