Raku Grammar::TokenProcessing
In brief
Raku package for processing grammar files in order to:
Remark: This package is made mostly to automate tasks for the DSL system of packages, see:
Raku-DSL-*.
Hence, the package is tested "just" over files written with a particular style and goal.
Installation
Installation from Zef ecosystem:
zef install Grammar::TokenProcessing
Installation from GitHub:
zef install https://github.com/antononcube/Raku-Grammar-TokenProcessing.git
Examples
Below are shown usages via the Command Line Interface (CLI) of UNIX-like operating systems.
Add fuzzy matching to token specs
add-token-fuzzy-matching --help
# Usage:
# add-token-fuzzy-matching <inputFileName> [-o|--output[=Any]] [--add-protos] [--sym-name=<Str>] [--add-exclusions] [--method=<Str>] [--func-name=<Str>] -- Transform a token lines in a grammar role into token lines with fuzzy matching.
#
# <inputFileName> Input file name.
# -o|--output[=Any] Output file; if not given the output is STDOUT.
# --add-protos Should proto tokens/rules/regexes be added or not. [default: False]
# --sym-name=<Str> Sym name. I and empty string ('') then no sym is put in. [default: '']
# --add-exclusions Should exclusions be added to token extensions or not? [default: True]
# --method=<Str> Method to find the word exclusions; one of 'nearest-neighbors' and 'stem-rules'. [default: 'nearest-neighbors']
# --func-name=<Str> Function name to do fuzzy matching with. [default: 'is-fuzzy-match']
Gather tokens
get-tokens --help
# Usage:
# get-tokens <inputFileName> [--token-names] -- Get tokens from token lines in grammar roles.
# get-tokens [<args> ...] [--token-names] [--per-file]
#
# <inputFileName> Input file name.
# --token-names Should the token names be gathered or the token literals? [default: False]
# [<args> ...] Input file names.
# --per-file Should the tokens be printed out per file or not? [default: False]
Gather tokens into a hash
get-tokens-hash --help
# Usage:
# get-tokens-hash <inputFileName> [--format=<Str>] -- Get tokens from token lines in grammar roles.
# get-tokens-hash [<args> ...] [--format=<Str>] [--per-file]
#
# <inputFileName> Input file name.
# --format=<Str> Format of the output. One of 'hash', 'raku', or 'json'. [default: 'json']
# [<args> ...] Input file names.
# --per-file Should the tokens be printed out per file or not? [default: False]
Replace token names
replace-token-names --help
# Usage:
# replace-token-names <dirName> <pairs> [--file-ext=<Str>] [--file-new-ext=<Str>] -- Replaces token names in files.
#
# <dirName> Directory with files to be processed.
# <pairs> CSV file with replacement pairs. The first column has the original token names; the second column has the new names.
# --file-ext=<Str> Extension(s) pattern of the files to be processed. [default: '.rakumod']
# --file-new-ext=<Str> Extension to be added to newly obtained files. If NONE the file content is overwritten. [default: '.new']
Random sentence generation
random-sentence-generation --help
# Usage:
# random-sentence-generation <grammar> [--rule-body=<Str>] [-n[=UInt]] [--max-iterations[=UInt]] [--max-random-list-elements[=UInt]] [--sep=<Str>] [--syms=<Str>] -- Generates random sentences for a given grammar.
#
# <grammar> Grammar name or definition.
# --rule-body=<Str> Rule body (to start generation with.) [default: 'TOP']
# -n[=UInt] Number of sentences. [default: 10]
# --max-iterations[=UInt] Max number of recursive rule replacement iterations. [default: 40]
# --max-random-list-elements[=UInt] Max number of elements to use generate random lists. [default: 6]
# --sep=<Str> Separator of the join literals; if 'NONE' Raku code lists are returned. [default: ' ']
# --syms=<Str> A string that is a sym or a space separated syms to concretize proto rules with. [default: 'English']
Here is example of random sentence generation based on the grammar of the package
"DSL::English::QuantileRegressionWorkflows", [AAp5]:
random-sentence-generation DSL::English::QuantileRegressionWorkflows::Grammar
# compute anomalies with residuals using the threshold NUMBER(12.44)
# resample
# echo plot the error plot
# compute and show bottom the time series data outliers
# take utilize using DATASET_NAME("RMwQ9")
# rescale axes
# show outliers
# compute anomalies using residuals by threshold NUMBER(270.37)
# moving map WL_EXPR("Sqrt[3]") using the NUMBER(76.54) NUMBER(94.92) NUMBER(215.75) and NUMBER(9.17) , NUMBER(57.94) weights
# show date list diagram by date origin DIGIT(9) DIGIT(8) DIGIT(8) DIGIT(9) - DIGIT(4) DIGIT(6) - DIGIT(8) DIGIT(5)
Here is another example using the Bulgarian localization of [AAp5] in [AAp7]:
random-sentence-generation DSL::Bulgarian::QuantileRegressionWorkflows::Grammar -n=10 --syms='Bulgarian English'
# изчисли и покажи дейта сет извънредности чрез Range [ NUMBER(92.56) , NUMBER(245.24) and NUMBER(136.3) NUMBER(225.38) ] вероятност
# прави квантила регресия пасване
# присвои канален обект до VAR_NAME("z5TbI")
# изчисли QuantileRegression пасване със от NUMBER(16.9) до NUMBER(173.46) стъпка NUMBER(27.55) възли
# рекапитулирай данни
# ползвай дейта сет VAR_NAME("RZRo7")
# премащабирай оси
# вземи ползвай от DATASET_NAME("3SKQm")
# изчисли и покажи извънредности чрез от NUMBER(172.37) към NUMBER(91.13) чрез стъпка NUMBER(193.01)
# изчисли времеви серия данни извънредности чрез Range[ NUMBER(70.13) NUMBER(177.74) and NUMBER(169.68) NUMBER(222.75) ]
Here we generate sentences with a grammar string (that is a valid Raku definition of a grammar):
random-sentence-generation -n=5 "
grammar Parser {
rule TOP { I [ <love> | <hate> ] <lang> }
token love { '♥' ** 1..3 | love }
token hate { '🖕' ** 1..2 | hate }
token lang { < Raku Perl Rust Go Python Ruby > }
}"
# I ♥ ♥ Go
# I love Perl
# I love Perl
# I love Raku
# I 🖕 Perl
Converting rules to regexes
Here are examples of converting rules to regexes:
use Grammar::TokenProcessing;
my %ruleBodies =
cookie => 'generic? chocolate cookie \w+ \d+',
cookie-limited => 'crunch bar \d ** 1..2';
for %ruleBodies.kv -> $k, $v {
say "rule : $v";
say "regex : {rule-to-regex($v)}\n";
}
# rule : generic? chocolate cookie \w+ \d+
# regex : generic? \h+ chocolate \h+ cookie \h+ \w+ \h+ \d+
#
# rule : crunch bar \d ** 1..2
# regex : crunch \h+ bar \h+ \d ** 1..2
More detailed examples -- with grammar creation for regex verification -- can be found in the test file
"06-rule-to-regex-conversion.rakutest".
References
Packages
[AAp1] Anton Antonov,
DSL::Shared, Raku package,
(2018-2022),
GitHub/antononcube.
[AAp2] Anton Antonov,
DSL::English::ClassificationWorkflows, Raku package,
(2018-2022),
GitHub/antononcube.
[AAp3] Anton Antonov,
DSL::English::DataQueryWorkflows, Raku package,
(2020-2022),
GitHub/antononcube.
[AAp4] Anton Antonov,
DSL::English::LatentSemanticAnalysisWorkflows, Raku package,
(2018-2022),
GitHub/antononcube.
[AAp5] Anton Antonov,
DSL::English::QuantileRegressionWorkflows, Raku package,
(2018-2022),
GitHub/antononcube.
[AAp6] Anton Antonov,
DSL::English::RecommenderWorkflows, Raku package,
(2018-2022),
GitHub/antononcube.
[AAp7] Anton Antonov,
DSL::Bulgarian, Raku package,
(2022),
GitHub/antononcube.