Rand Stats

Algorithm::Kruskal

zef:titsuki

Actions Status

NAME

Algorithm::Kruskal - a Raku implementation of Kruskal's Algorithm for constructing a spanning subtree of minimum length

SYNOPSIS

use Algorithm::Kruskal;

my $kruskal = Algorithm::Kruskal.new(vertex-size => 4);

$kruskal.add-edge(0, 1, 2);
$kruskal.add-edge(1, 2, 1);
$kruskal.add-edge(2, 3, 1);
$kruskal.add-edge(3, 0, 1);
$kruskal.add-edge(0, 2, 3);
$kruskal.add-edge(1, 3, 5);

my %forest = $kruskal.compute-minimal-spanning-tree();
%forest<weight>.say; # 3
%forest<edges>.say; # [[1 2] [2 3] [3 0]]

DESCRIPTION

Algorithm::Kruskal is a Raku implementation of Kruskal's Algorithm for constructing a spanning subtree of minimum length

CONSTRUCTOR

my $kruskal = Algorithm::Kruskal.new(%options);

OPTIONS

Sets vertex size. The vertices are numbered from 0 to $vertex-size - 1.

METHODS

add-edge(Int $from, Int $to, Real $weight)

$kruskal.add-edge($from, $to, $weight);

Adds a edge to the graph. $weight is the weight between vertex $from and vertex $to.

compute-minimal-spanning-tree() returns List

my %forest = $kruskal.compute-minimal-spanning-tree();
%forest<edges>.say; # display edges
%forest<weight>.say; # display weight

Computes and returns a minimal spanning tree and its weight.

AUTHOR

titsuki titsuki@cpan.org

COPYRIGHT AND LICENSE

Copyright 2016 titsuki

This library is free software; you can redistribute it and/or modify it under the Artistic License 2.0.

This algorithm is from Kruskal, Joseph B. "On the shortest spanning subtree of a graph and the traveling salesman problem." Proceedings of the American Mathematical society 7.1 (1956): 48-50.